Dynamical Models and tracking regret in online convex programming

نویسندگان

  • Eric C. Hall
  • Rebecca Willett
چکیده

This paper describes a new online convex optimization method which incorporates a family of candidate dynamical models and establishes novel tracking regret bounds that scale with the comparator’s deviation from the best dynamical model in this family. Previous online optimization methods are designed to have a total accumulated loss comparable to that of the best comparator sequence, and existing tracking or shifting regret bounds scale with the overall variation of the comparator sequence. In many practical scenarios, however, the environment is nonstationary and comparator sequences with small variation are quite weak, resulting in large losses. The proposed Dynamic Mirror Descent method, in contrast, can yield low regret relative to highly variable comparator sequences by both tracking the best dynamical model and forming predictions based on that model. This concept is demonstrated empirically in the context of sequential compressive observations of a dynamic scene and tracking a dynamic social network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms for Online Stochastic Convex Programming

We introduce the online stochastic Convex Programming (CP) problem, a very general version of stochastic online problems which allows arbitrary concave objectives and convex feasibility constraints. Many wellstudied problems like online stochastic packing and covering, online stochastic matching with concave returns, etc. form a special case of online stochastic CP. We present fast algorithms f...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

Online Optimization in Dynamic Environments

High-velocity streams of high-dimensional data pose significant “big data” analysis challenges across a range of applications and settings. Online learning and online convex programming play a significant role in the rapid recovery of important or anomalous information from these large datastreams. While recent advances in online learning have led to novel and rapidly converging algorithms, the...

متن کامل

On the Generalization Ability of Online Strongly Convex Programming Algorithms

This paper examines the generalization properties of online convex programming algorithms when the loss function is Lipschitz and strongly convex. Our main result is a sharp bound, that holds with high probability, on the excess risk of the output of an online algorithm in terms of the average regret. This allows one to use recent algorithms with logarithmic cumulative regret guarantees to achi...

متن کامل

Regret Bound by Variation for Online Convex Optimization

In (Hazan and Kale, 2008), the authors showed that the regret of the Follow the Regularized Leader (FTRL) algorithm for online linear optimization can be bounded by the total variation of the cost vectors. In this paper, we extend this result to general online convex optimization. We first analyze the limitations of the FTRL algorithm in (Hazan and Kale, 2008) when applied to online convex opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013